曲线y1=-x^2/3与直线y2=ax围成的面积

 时间:2026-02-12 21:41:29

1、联立方程,求交点通式如下:

曲线y1=-x^2/3与直线y2=ax围成的面积

2、通过定积分,求围成面积通式如下:

曲线y1=-x^2/3与直线y2=ax围成的面积

1

曲线y1=-x^2/3与直线y2=ax围成的面积

1

曲线y1=-x^2/3与直线y2=ax围成的面积

1

曲线y1=-x^2/3与直线y2=ax围成的面积

  • 曲线y1=-5x^2/2与直线y2=ax围成的面积
  • 曲线y1=-2x^2/3与直线y2=-a-ax围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax-1围成的面积
  • 曲线y1=-5x^2/2与直线y2=-a-ax围成的面积
  • 曲线y1=-2x^2/3与直线y2=ax-1围成的面积
  • 热门搜索
    关于莲的手抄报 杜绝浪费手抄报 小学生反邪教手抄报 法律知识手抄报资料 诚信的手抄报 数学手抄报资料大全 关于春节的语文手抄报 关于春节手抄报大全 关于战争的手抄报 环境手抄报资料