曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

 时间:2026-02-14 06:13:41

1、联立方程,求交点通式如下:

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

2、通过定积分,求围成面积通式如下:

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

  • 曲线y1=-x^2/2与直线y2=-a-ax围成的面积
  • 如何求函数y1=sin3x与y2=sinx/3围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax-1围成的面积
  • 曲线y1=-x^2/2与直线y2=ax围成的面积
  • 热门搜索
    少先队建队日手抄报 清明节手抄报全国第一 牙齿手抄报 战争手抄报 国庆手抄报版面设计图 关于五一劳动节的手抄报 安全手抄报内容资料 关于反邪教的手抄报 母亲节手抄报大全 西游记手抄报图片