【平面几何】Thébault定理的一个应用

 时间:2024-10-13 11:52:43

1、先介绍一下Thebault定理:如下图,I、J、K三点共线,且KI:IJ=(tanu)^2。

【平面几何】Thébault定理的一个应用

2、下面开始处理原题。先标记题目中四个三角形内切圆的圆心是Ia、Ib、Ic、Id。

【平面几何】Thébault定理的一个应用

3、假设对角线AC和BD交于X。与线段AX、BX及外接圆相切的圆的圆心记为Ocd,类似的,有Oda、Oab、Obc。

【平面几何】Thébault定理的一个应用

4、设AX与BX的夹角是2u,根据哌囿亡噱Thebault定理,可以证明:Oda、Id、Ocd三点共线,且OcdId:IdOda=(tanu)^2。

【平面几何】Thébault定理的一个应用

5、同样的,Oab、Ia、Oda三点共线,且OabIa:IaOda=(tanu)^2。

【平面几何】Thébault定理的一个应用

6、所以,IaId//OabOcd。

【平面几何】Thébault定理的一个应用

7、原题结论成立。

【平面几何】Thébault定理的一个应用
  • 百度网盘里的文件怎么导出来
  • 360网页上如何直接下载视频
  • 百度网盘下载的文件怎么导出
  • 网盘里的文件怎么保存到手机上
  • 百度网盘下载的视频怎么用其他播放器播放
  • 热门搜索
    手抄报题目 趣味数学手抄报 低碳生活手抄报图片 文化手抄报 读书的手抄报的内容 快乐暑假手抄报内容 手抄报图案大全 古诗配画手抄报 小学生安全手抄报图 讲卫生手抄报内容