立体几何怎么证明点在平面内

 时间:2024-10-12 11:38:41

立体几何中,如何证明某个点在某个平面内?我们将该问题具体化:已知平面A,在空间上存在一个点o,请证明该点o在平面A上。

立体几何怎么证明点在平面内

工具/原料

解法一

1、首先在平面A上找到两个点,我们分别命名为a点和b点。具体见图一。

立体几何怎么证明点在平面内

2、经过o点和a点连线,经过o点和b点连线。由oa直线和ob直线所构成的平面,我们称为平面B。

3、过平面A画一条垂直线l1,过平面B画一条垂直线l2。

4、我们证明直线l1和直线l2平行,所以平面A和平面B平行或者共面。

5、因为平面A和平面B有共同的a点和b点,所以平面A和平面B共面,那么o点在平面A上。

解法二

1、我们姗隗肆念采用向量的方法来解决点o是否在平面内A上,在平面A上找到三个确定的点,分别是a、b、c三点,坐标分别为(x1,y1)、(x2,y2)、(x3,y3)。其中o点坐标为(x0,y0)。见图二。

立体几何怎么证明点在平面内

2、设ao=xab+yac,求解该向量方程。

3、如果上述向量方程有解,则证明o点、a点、b点及c点是共面的,也就是o点在平面A上。

  • 投影向量的计算公式是什么
  • 韦达定理公式是什么
  • 生态工程的四个原理是什么
  • 二项式系数最大的项怎么求
  • 电子式如何书写
  • 热门搜索
    38妇女节手抄报 爱耳日手抄报 新冠肺炎手抄报 教师节手抄报简单好看 我和祖国共成长手抄报 安全教育手抄报一等奖 端午节手抄报花边 元旦手抄报内容 防溺水手抄报简单漂亮 新春手抄报