曲线y1=-4x^2/3与直线y2=-a-ax围成的面积

 时间:2026-02-12 19:36:28

1、联立方程,求交点通式如下:

曲线y1=-4x^2/3与直线y2=-a-ax围成的面积

2、通过定积分,求围成面积通式如下:

曲线y1=-4x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-4x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-4x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-4x^2/3与直线y2=-a-ax围成的面积

  • 曲线y1=-5x^2/2与直线y2=-a-ax围成的面积
  • 曲线y1=-4x^2/3与直线y2=ax-1围成的面积
  • 曲线y1=-2x^2/3与直线y2=ax-1围成的面积
  • 曲线y1=-3x^2/2与直线y2=ax-1围成的面积
  • 曲线y1=-x^2/3与直线y2=ax-1围成的面积
  • 热门搜索
    禁烟手抄报 关于健康的手抄报 地球日手抄报 六年级数学手抄报 向国旗敬礼手抄报 圣诞节手抄报 爱国手抄报图片 反邪教手抄报图片 热爱祖国手抄报 长征手抄报